Correlated Component Regression: A Prediction/Classification Methodology for Possibly Many Features
نویسنده
چکیده
A new ensemble dimension reduction regression technique, called Correlated Component Regression (CCR), is proposed that predicts the dependent variable based on K correlated components. For K = 1, CCR is equivalent to the corresponding Naïve Bayes solution, and for K = P, CCR is equivalent to traditional regression with P predictors. An optional step-down variable selection procedure provides a sparse solution, with each component defined as a linear combination of only P* < P predictors. For high-dimensional data, simulation results suggest that good prediction is generally attainable for K = 3 or 4 regardless of the number of predictors, and estimation is fast. When predictors include one or more suppressor variables, common with gene expression data, simulations based on linear regression, logistic regression and discriminant analysis suggest that CCR predicts outside the sample better than comparable approaches based on stepwise regression, penalized regression and/or PLS regression. A major reason for the improvement is that the CCR/step-down algorithm is much better than other sparse techniques in capturing important suppressor variables among the final predictors.
منابع مشابه
Prediction of Critical Thinking Based on Emotional Creativity in University Students
The aim of the study was to investigate predicting of critical thinking based on emotional creativity and its components in university students. One hundred fifty six Shiraz university students were selected using convenient sampling method. Emotional Creativity and Critical Thinking Questionnaires were used for collecting data. Data were analyzed by Pearson correlation and multiple regression ...
متن کاملA Validation Test Naive Bayesian Classification Algorithm and Probit Regression as Prediction Models for Managerial Overconfidence in Iran's Capital Market
Corporate directors are influenced by overconfidence, which is one of the personality traits of individuals; it may take irrational decisions that will have a significant impact on the company's performance in the long run. The purpose of this paper is to validate and compare the Naive Bayesian Classification algorithm and probit regression in the prediction of Management's overconfident at pre...
متن کاملRecognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier
This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملPrediction of mental disorders after Mild Traumatic Brain Injury: principle component Approach
Introduction: In Processes Modeling, when there is relatively a high correlation between covariates, multicollinearity is created, and it leads to reduction in model's efficiency. In this study, by using principle component analysis, modification of the effect of multicolinearity in Artificial Neural Network (ANN) and Logistic Regression (LR) has been studied. Also, the effect of multicolineari...
متن کامل